Using Atomic Force Microscopy to Characterize the Conformational Properties of Proteins and Protein-DNA Complexes That Carry Out DNA Repair.

نویسندگان

  • Sharonda LeBlanc
  • Hunter Wilkins
  • Zimeng Li
  • Parminder Kaur
  • Hong Wang
  • Dorothy A Erie
چکیده

Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of single biomolecules and complexes deposited on a surface with nanometer resolution. AFM is a powerful tool for characterizing protein-protein and protein-DNA interactions. It can be used to capture snapshots of protein-DNA solution dynamics, which in turn, enables the characterization of the conformational properties of transient protein-protein and protein-DNA interactions. With AFM, it is possible to determine the stoichiometries and binding affinities of protein-protein and protein-DNA associations, the specificity of proteins binding to specific sites on DNA, and the conformations of the complexes. We describe methods to prepare and deposit samples, including surface treatments for optimal depositions, and how to quantitatively analyze images. We also discuss a new electrostatic force imaging technique called DREEM, which allows the visualization of the path of DNA within proteins in protein-DNA complexes. Collectively, these methods facilitate the development of comprehensive models of DNA repair and provide a broader understanding of all protein-protein and protein-nucleic acid interactions. The structural details gleaned from analysis of AFM images coupled with biochemistry provide vital information toward establishing the structure-function relationships that govern DNA repair processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UV light-damaged DNA and its interaction with human replication protein A: an atomic force microscopy study.

We have imaged a non-damaged and UV-damaged DNA fragment and its complexes with human replication protein A (RPA) using tapping mode atomic force microscopy (AFM). For imaging, molecules were immobilized under nearly physiological conditions on mica surfaces. Quantitative sizing of the 538 bp DNA before and after UV light treatment shows a reduction in the contour and persistence lengths and me...

متن کامل

Determination of protein–DNA binding constants and specificities from statistical analyses of single molecules: MutS–DNA interactions

Atomic force microscopy (AFM) is a powerful technique for examining the conformations of protein-DNA complexes and determining the stoichiometries and affinities of protein-protein complexes. We extend the capabilities of AFM to the determination of protein-DNA binding constants and specificities. The distribution of positions of the protein on the DNA fragments provides a direct measure of spe...

متن کامل

DNA bending and unbending by MutS govern mismatch recognition and specificity.

DNA mismatch repair is central to the maintenance of genomic stability. It is initiated by the recognition of base-base mismatches and insertion/deletion loops by the family of MutS proteins. Subsequently, ATP induces a unique conformational change in the MutS-mismatch complex but not in the MutS-homoduplex complex that sets off the cascade of events that leads to repair. To gain insight into t...

متن کامل

High accuracy FIONA-AFM hybrid imaging.

Multi-protein complexes are ubiquitous and play essential roles in many biological mechanisms. Single molecule imaging techniques such as electron microscopy (EM) and atomic force microscopy (AFM) are powerful methods for characterizing the structural properties of multi-protein and multi-protein-DNA complexes. However, a significant limitation to these techniques is the ability to distinguish ...

متن کامل

Mutants of the base excision repair glycosylase, endonuclease III: DNA charge transport as a first step in lesion detection.

Endonuclease III (EndoIII) is a base excision repair glycosylase that targets damaged pyrimidines and contains a [4Fe-4S] cluster. We have proposed a model where BER proteins that contain redox-active [4Fe-4S] clusters utilize DNA charge transport (CT) as a first step in the detection of DNA lesions. Here, several mutants of EndoIII were prepared to probe their efficiency of DNA/protein charge ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Methods in enzymology

دوره 592  شماره 

صفحات  -

تاریخ انتشار 2017